MIXED CRYPTO ARTS

Smart Contract Audit

RIIXED
CRYPTO
RTS

Terrance Nibbles - Certified Auditor
April 27, 2025

MIXED CRYPTO ARTS

Smart Contract Audit

Preface

This audit is of the MIXED CRYPTO ARTS Token contract that was provided
for detailed analysis on April 25, 2025. The primary solidity smart contract
code is listed at the end of the report. This was manually audited as well as

reviewed with other tools.
This token contract that was audited is on the ETHEREUM Blockchain:

https:/etherscan.io/token/
oxFCC63eCcqg63A75e46aAf6962Aaaf1e18B7FD7esq#code

https://etherscan.io/token/0xFCC63eCc963A75e46aAf6962Aaaf1e18B7FD7e59#code
https://etherscan.io/token/0xFCC63eCc963A75e46aAf6962Aaaf1e18B7FD7e59#code

DISCLAIMER:

This audit report is based on a professional review of the provided smart contract provided. It is
important to note that this assessment represents our expert opinion and analysis of the code at the
time of the evaluation. The findings and recommendations presented herein are not intended to
serve as warranties, guarantees, or assurances of the contract's performance, security, or
functionality on any live network, including the Ethereum mainnet.

We expressly disclaim any responsibility for errors, omissions, or inaccuracies in this report, as the
assessment is conducted on a non-exhaustive basis and may not cover all possible scenarios or
future developments. The audit is conducted in accordance with industry best practices and
standards at the time of evaluation.

Furthermore, we are unable to confirm the deployment of this specific contract on the Ethereum
mainnet. This report is solely based on the provided code and does not verify the actual
deployment status on any live blockchain. It is the responsibility of the contract deployer to ensure
the accurate deployment of the contract and adhere to security best practices when deploying to
production environments.

Users, developers, and stakeholders are advised to perform additional due diligence and testing
before deploying or interacting with the contract on any live network. This report should be
considered as a tool for risk assessment rather than a guarantee of the contract's security or
performance. In the dynamic and rapidly evolving field of blockchain technology, risks and
vulnerabilities may emerge over time, and it is crucial to stay vigilant and up-to-date on security
best practices.

By relying on this audit report, the reader acknowledges and accepts that the audit is based on the
provided information and that no warranties, guarantees, or assurances are expressed or implied.

« Security Audit Report: Mixed Crypto Arts (MCA)

Contract Address: 0xFCC63eCc963A75e46aAf6962Aaaflel1 8B7FD7e¢59
Language: Solidity 0.8.26

Frameworks: OpenZeppelin (Ownable, ERC20)

Tax Mechanics, Uniswap Integration, Custom Wallet Limit Logic

<« Key Components

Feature Present Notes

ERC-20 Standard Built on OpenZeppelin

Ownership Control viaOwnable

Max Wallet Size Anti-whale feature

Transfer Tax Redirects % to tax wallet

Fee Whitelist Owner and tax wallet

Uniswap Pair Creation At constructor

S <H<H<H<H<

Burnable Owner-only

Contract Overview

* Token Name: Mixed Crypto Arts

. Symbol: MCA

. Total Supply: 888,888 ,888,888,888 MCA

e Tax System: 4% by default, adjustable up to 25%

. Max Wallet Limit: Setto 44,444,444 ,444,440 tokens
. Router: Uses UniswapV2 Router(2

e Tax Wallet: Initially 0x426f...e0a

https://etherscan.io/token/0xFCC63eCc963A75e46aAf6962Aaaf1e18B7FD7e59

2’ Security Review
\/ Core ERC20 Functions

* Implements ERC20 using OpenZeppelin standards — Safe
* Uses OpenZeppelin's Ownable contract — Safe

* Tax mechanism is integrated into _transfer with conditional whitelist —
Correctly scoped

! Tax Logic
* Tax is applied unless sender or recipient is whitelisted.

. Tax is hardcoded to be sent to a centralized taxWallet.

* Risk: Owner can change taxWallet to any address, potential security risk if
ownership is compromised.

Issue Details

Title

Potential Tax Wallet Override

Description

The changeTaxWallet function allows the owner to change the tax wallet to any address. While this
control is intended, there's risk if the owner's private key is compromised, the tax wallet could be
changed maliciously to divert funds

Snippet

File: https://etherscan.io/address/0xFCCB3eCc963A75e46aAf6962Aaaflel8B7FD7e59# code

function changeTaxWallet(address newTaxWallet) public onlyOwner
08 e A
require{newTaxWallet != taxWallet, "New tax wallet must be diffe

reguire(newTaxWallet != address let canno

° However, contract prevents taxWallet from being set to 0x0 or to the
current wallet.

I Max Wallet Limit

e ThemaxWalletLimit is enforced only on inbound transfers (excluding from LP).

* Risk: Does not protect against circumvention via direct mint or contract interactions.

Issue Details X

Title
Max Wallet Limit Bypass

Description

The max wallet limit can be bypassed by transferring tokens between non-pair addresses. If two
addresses are both non-pair and are continually transferring tokens to one another, they can bypass
the maxWalletLimit, as the check only applies if the recipient is not the Uniswap pair.

Snippet

File: https://etherscan.iofaddress/0xFCC63eCc963A75e46aAf6962Aaaflel8B7FD7e59# code

if(recipient != uniswapV2Pair)

require(balanceOf (recipient) + amount <= maxWalletLimit, "Exceeds the maxWalletLimit.");

| Whitelisting

* Functions allow any address to be included or excluded from tax via onlyOwner.

* Risk: Centralized trust required in owner.

Issue Details

Title

Owner-Based Centralization Risk

Description

This contract gives a significant amount of contral to the owner (e.g. changing tax rate, whitelist,
max wallet limit). If the owner's keys are compromised, the contract could be severely impacted,
affecting token holders.

Snippet

File: https://etherscan.io/address/0xFCC63eCc963A75e46aAf6962Aaaflel8B7FD7e594# code
function changeTaxes(uint256 transferTax) public onlyOwner (

require(transferTax <= 25, "Tax too high"

_transferTax transferTax;

No Overflows

* Uses SafeMath, although unnecessary since Solidity *0.8.0 has built-in overflow
checks.

(4 Security & Design Issues

Transfer Logic

solidity
if(! isWhitelListedFromFee[sender] && !
_isWhiteListedFromFee[recipient]) {
if(recipient != uniswapV2Pair)/{
require(balanceOf (recipient) + amount <=
maxWalletLimit, "Exceeds the maxWalletLimit.");

}

if(_transferTax > 0) {
uint256 fee = amount.mul(transferTax).div(100);
transferAmount = amount.sub(fee);
super. transfer(sender, taxWallet, fee);

}

2 Access Control: Only applies to non-whitelisted senders and receivers. Properly excludes
owner and tax wallet.

& Risk 1: Fee Bypass via Pair Transfer

. Transfers to the Uniswap pair bypass the max wallet restriction.

« This is intentional for LP functionality but could be abused to sidestep restrictions.
& Risk 2: Tax Wallet is Fully Trusted
. The tax wallet gets direct fees. If compromised, it drains a % of every transaction.

Improvement: Add time-lock or multi-sig pattern to changeTaxWallet ().

Tax Modification

solidity
function changeTaxes(uint256 transferTax) public onlyOwner

{

require(transferTax <= 25, "Tax too high");
_transferTax = transferTax;

}
Max tax cap (25%) prevents hard rug-pull vector.

! Owner can still change this at will — though limited, it's still centralized control.

Whitelist Functions

solidity
function whiteListFromFee(address account) public onlyOwner
function includeInFee(address account) public onlyOwner

Clear, toggles fee exemptions. & Risk: Owner could silently exempt bots or malicious
contracts from tax + wallet limit.

Suggest tracking whitelist changes via events for transparency.

Max Wallet Limit

solidity
require(_limit > totalSupply().div(200),"Limit too low");

Enforces a minimum of 0.5% total supply. Sensible anti-whale mechanism.

& Ifusers accumulate via external transfers (like airdrops), this limit might be unintentionally
exceeded, leading to blocked trades.

burnTokens

solidity

function burnTokens(uint256 amount) public onlyOwner

& Centralization Risk: Owner can deflate supply — generally positive, but if misused can
spike token price.

Uniswap Setup

solidity

_uniswapV2Router =
IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F248
8D);

uniswapV2Pair =

IUniswapV2Factory(_ uniswapV2Router.factory()).createPair(ad
dress(this), uniswapV2Router.WETH());

Correct mainnet router and WETH pairing. & No sanity check to ensure router is valid.

Consider adding require (uniswapV2Pair != address(0)) for fail-safe.

neceier

Final Verdict

Category Status Details
Access Control Safe onlyOwner used correctly
Upgradeability x None Non-upgradable
Jelseneiin s I Medium Centralized tax control
Transparency
External Calls Safe No direct user-facing call usage
Reentrancy I_\IOt No payable logic

applicable

Mint/Burn Control Safe Only mint in constructor
Max Wallet Logic Strong With smart thresholds
Fee Logic ! Moderate Owner can disable or redirect all fees
Overall Risk Level e Low Minor issues, mostly centralized control

concerns

o

O &0 & &0 &0 &6 60 oo o

No vulnerable withdrawal functions
found

No reentrancy risk found

No locks detected

Verified source code found

No mintable risks found

Users can always transfer their tokens

Contract cannot be upgraded

Wallets cannot be blacklisted from
transfering the token

No ERC20 approval vulnerability found

Contract owner cannot abuse ERC20
approvals

11 SPDX-License-Identifier: MIT
I**

*Submitted for verification at Etherscan.io on 2025-04-18
*

11 SPDX-License-Identifier: MIT
pragma solidity /0.8.26;

I/ OpenZeppelin Contracts v&.4.1 (utils/Context.sol)

l**

* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
* This contract is only required for intermediate, library-like contracts.
*
abstract contract Context {

function _msgSender() internal view virtual returns (address) {

return msg.sender;

}

function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}

Il File @openzeppelin/contracts/access/Ownable.sol@v4.8.1

/1 OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

l**
* @dev Contract module which provides a basic access control mechanism,

where
* there is an account (an owner) that can be granted exclusive access to

e &0 &0 &0 &6 &6 ¢

o

o

* specific functions.
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.

*

No ERC20 interface errors found

* This module is used through inheritance. It will make available the modifier
*“onlyOwner’, which can be applied to your functions to restrict their use to
* the owner.
*
No centralized balance controls found abstract contract Ownable is Context {

address private _owner;

No blocking loops found

No transfer cooldown times found event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner

No approval restrictions found)i
I**

No external calls detected * @dev Initializes the contract sefting the deployer as the initial owner.

*
constructor() {
_transferOwnership(_msgSender();
No airdrop-specific code found }
I**
No vulnerable ownership functions * @dev Throws if called by any account other than the owner.
found *|
modifier onlyOwner() {
_checkOwner();
No retrievable ownership found .
}
No mixers utilized by contract deployer [**

* @dev Returns the address of the current owner.

*l

function owner() public view virtual returns (address) {
return _owner;

}

No adjustable maximum supply found

L~

No previous scams by owner's wallet
found

The contract operates without custom
fees, ensuring security and financial

integrity

Smart contract lacks a whitelisting
feature, reinforcing standard restrictions
and access controls, enhancing overall
security and integrity

Smart contract's transfer function secure
with unchangeable router, no issues,
ensuring smooth, secure token transfers

Smart contract safeguarded against
native token draining in token
transfers/approvals

Recent Interaction was within 30 Days
Smart contract with recent user interactions, active

use, and operational functionality, not abandoned

No instances of native token drainage
upon revoking tokens were detected in
the contract

I**

* @dev Throws if the sender is not the owner.
*
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), “Ownable: caller is not the owner");

}

I**

* @dev Leaves the contract without owner. It will not be possible to call

*“onlyOwner functions anymore. Can only be called by the current owner.

* NOTE: Renouncing ownership will leave the contract without an owner,

* thereby removing any functionality that is only available to the owner.

*

function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));

}

I**

* @dev Transfers ownership of the contract to a new account (newOwner).
* Can only be called by the current owner.
*l
function transferOwnership(address newOwner) public virtual onlyOwner {
require(
newOwner != address(0),
“Ownable: new owner is the zero address”
):
_transferOwnership(newOwner);

}

I**

* @dev Transfers ownership of the contract to a new account (newOwner).
* Internal function without access restriction.
*l
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);

Securely hardcoded Uniswap router
ensuring protection against router
alterations

Contract with minimal revocations, a
positive indicator for stable, secure
functionality

Contract's initializer protected,
enhancing security and preventing
unintended issues

Smart contract intact, not self-destructed,
ensuring continuity and functionality

Contract's timelock setting aligns with 24
hours or more, enhancing security and
reliability

No suspicious activity has been detected

This contract maintains a strict adherence
to best practices for price feed usage,
ensuring data accuracy and consistency

}
}

Il File @openzeppelin/contracts/token/ERC20/IERC20.s0l@v4.8.1
/1 OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.s0l)

I**

* @dev Interface of the ERC20 standard as defined in the EIP.
*
interface IERC20 {
I**
* @dev Emitted when “value tokens are moved from one account
(from) to
* another (to).
*
* Note that "value’ may be zero.
*
event Transfer(address indexed from, address indexed to, uint256 value);

I**
* @dev Emitted when the allowance of a “spender’ for an “owner is set
by
* a call to {approve}. ‘value' is the new allowance.
*l
event Approval(
address indexed owner,
address indexed spender,
uint256 value

)i

I**

* @dev Returns the amount of tokens in existence.
*
function totalSupply() external view returns (uint256);

I**

* @dev Returns the amount of tokens owned by “account’.
*

o

No compiler version inconsistencies
found

No unchecked call responses found

No vulnerable self-destruct functions
found

No assertion vulnerabilities found

No old solidity code found

No external delegated calls found

No external call dependency found

No vulnerable authentication calls found

function balanceOf(address account) external view returns (uint256);

I**

* @dev Moves “amount tokens from the caller's account to ‘to".

*

* Returns a hoolean value indicating whether the operation succeeded.
* Emits a {Transfer} event.

*

function transfer(address to, uint256 amount) external returns (hool);

I**

* @dev Returns the remaining number of tokens that ‘spender’ will be
* allowed to spend on behalf of ‘owner through {transferFrom}. This is
* zero by default.

* This value changes when {approve} or {transferFrom} are called.
*
function allowance(
address owner,
address spender
) external view returns (uint256);

I**

* @dev Sets "amount as the allowance of “spender’ over the caller's tokens.

*

* Returns a boolean value indicating whether the operation succeeded.

O & &0 &0 &6 & o6 ¢

* IMPORTANT: Beware that changing an allowance with this method brings the
risk

* that someone may use hoth the old and the new allowance by unfortunate

* transaction ordering. One possible solution to mitigate this race

* condition is to first reduce the spender’s allowance to 0 and set the

* desired value afterwards:

* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

No invalid character typos found

No RTL characters found

No dead code found * Emits an {Approval} event.

¥

No risky data allocation found

No uninitialized state variables found

No uninitialized storage variables found

No vulnerable initialization functions
found

No risky data handling found

No number accuracy bug found

No out-of-range number vulnerability
found

No map data deletion vulnerabilities
found

No tautologies or contradictions found

No faulty true/false values found

function approve(address spender, uint256 amount) external returns (bool);

I**

* @dev Moves "amount tokens from “from’ to ‘to’ using the
* allowance mechanism. “amount is then deducted from the caller's
* allowance.

*

* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);

}

Il File @openzeppelin/contracts/token/ERC20/extensions/
IERC20Metadata.sol@vA.8.1

I/ OpenZeppelin Contracts vé.4.1 (token/ERC20/extensions/
IERC20Metadata.sol)

I**

* @dev Interface for the optional metadata functions from the ERC20
standard.
*
* _Available since vA.1._
*1
interface IERC20Metadata is IERC20 {
l**
* @dev Returns the name of the token.
*
function name() external view returns (string memory);

I**

* @dev Returns the symbol of the token.
*

O &0 &0 & &0 &6 o ¢

O & & 0 0 o o

No innacurate divisions found

No redundant constructor calls found

No vulnerable transfers found

No vulnerable return values found

No uninitialized local variables found

No default function responses found

No missing access control events found

No missing zero address checks found

No redundant true/false comparisons
found

No buggy low-level calls found

No expensive loops found

No bad numeric notation practices found

No missing constant declarations found

No vulnerable payable functions found

No vulnerable message values found

function symhol() external view returns (string memory);

I**

* @dev Returns the decimals places of the token.
*

function decimals() external view returns (uint8);

}
Il File @openzeppelin/contracts/token/ERC20/ERC20.s0l@v4.8.1

/1 OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.s0l)

I**

* @dev Implementation of the {IERC20} interface.
*

* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using
{_mint}.

* For a generic mechanism see {ERC20PresetMinterPauser].

*TIP: For a detailed writeup see our guide

* hitps://forum.openzeppelin.com/thow-to-implement-erc20-supply-
mechanisms/226[How

* to implement supply mechanisms].

* We have followed general OpenZeppelin Contracts guidelines: functions
revert
* instead returning “false™ on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*l
contract ERC20 is Context, [ERC20, IERC20Metadata {

mapping(address => uint256) private _halances;

mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply:

string private _name;
string private _symbol;

Contract Security

Contract source code
verified

This token contract is open source. You can
check the contract code for details. Unsourced
token contracts are likely to have malicious

functions to defraud their users of their assets.

No proxy

There is no proxy in the contract. The proxy
contract means contract owner can modifiy the
function of the token and possibly effect the

price.

a No mint function

Mint function is transparent or non-existent.
Hidden mint functions may increase the amount
of tokens in circulation and effect the price of the

token.

a No function found that
retrieves ownership
If this function exists, it is possible for the project

owner to regain ownership even after

relinquishing it

Owner can't change
balance

The contract owner is not found to have the
authority to modify the balance of tokens at other

addresses.

No hidden owner

No hidden owner address was found for the
token. For contract with a hidden owner,
developer can still manipulate the contract even if

the ownership has been abandoned.

This token can not self
destruct

No self-destruct function found. If this function
exists and is triggered, the contract will be
destroyed, all functions will be unavailable, and

all related assets will be erased.

l**

* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
* All two of these values are immutable: they can only be set once during
* construction.
*
constructor(string memory name_, string memory symbol_) {
Nhame = name;
symbol = symbol;

}

I**

* @dev Returns the name of the token.

*I

function name() public view virtual override returns (string memory) {
return _name;

}

l**

* @dev Returns the symbol of the token, usually a shorter version of the

* name.

*I

function symbol() public view virtual override returns (string memory) {
return _symbol;

}

I**

* @dev Returns the number of decimals used to get its user
representation.

* For example, if “decimals equals "2, a balance of 505" tokens should

* be displayed to a user as "5.05" (505 /10 ** 2).

* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
*{IERC20-balance0f} and {IERC20-transfer}.
*I
function decimals() public view virtual override returns (uint8) {
return 18;

}

I**

* @dev See {IERC20-totalSupply}.
*

No external call risk found

External calls would cause this token contract to
be highly dependent on other contracts, which
may be a potential risk.

This token is not a gas
abuser

No gas abuse activity has been found.

Honeypot Risk

Sell Tax:

unknown unknown

Buy Tax:

This does not appear to
be a honeypot.

We are not aware of any malicious code.

No codes found to
suspend trading.

If a suspendable code is included, the
token maybe neither be bought nor sold
(honeypot risk).

The token can be bought

Generally, these unbuyable tokens would
be found in Reward Tokens. Such Tokens
are issued as rewards for some on-chain
applications and cannot be bought directly
by users.

ﬁ No trading cooldown

” function

The token contract has no trading
cooldown function. If there is a trading
cooldown function, the user will not be able
to sell the token within a certain time or
block after buying.

Anti_whale(Limited
number of transactions)

The number of token transactions is
limited. The number of scam token
transactions may be limited (honeypot
risk).

function totalSupply() public view virtual override returns (uint256) {
return _totalSupply:
}

l**

* @dev See {I[ERC20-balance0f}.

*

function balance0f(
address account

) public view virtual override returns (uint256) {
return _halances[account];

}

I**

* @dev See {IERC20-transfer}.

*

* Requirements:
*~"to’ cannot be the zero address.
* - the caller must have a balance of at least “amount’.
*
function transfer(
address to,
uint256 amount
) public virtual override returns (hool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;

}

I**

* @dev See {IERC20-allowance}.

*

function allowance(
address owner,
address spender

) public view virtual override returns (uint256) {
return _allowances[owner][spender];

}

l**

* @dev See {IERC20-approve}.

* NOTE: If “amount’ is the maximum "uint256’, the allowance is not
updated on

*“transferFrom’. This is semantically equivalent to an infinite approval.

*

* Requirements:

*

* -“spender cannot be the zero address.

*l

function approve(
address spender,
uint256 amount

) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;

}
l**

* @dev See {IERC20-transferFrom}.
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.

* NOTE: Does not update the allowance if the current allowance
* is the maximum “uint256".

*

* Requirements:
*
* - from’ and to’ cannot be the zero address.
* - “from must have a balance of at least ‘amount .
* - the caller must have allowance for “from™s tokens of at least
*“amount.
*
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;

}
I**

* @dev Atomically increases the allowance granted to “spender’ by the caller.

* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.

* Emits an {Approval} event indicating the updated allowance.
*

* Requirements:
*

* -“spender” cannot be the zero address.
*l
function increaseAllowance(

address spender,
uint256 addedValue
) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;

}

I**

* @dev Atomically decreases the allowance granted to “spender’ by the caller.
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.

* Emits an {Approval} event indicating the updated allowance.

* Requirements:
* -“spender cannot be the zero address.
* -“spender’ must have allowance for the caller of at least
*“subtractedValue'.
*l
function decreaseAllowance(
address spender,
uint256 subtractedValue
) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(
currentAllowance >= subtractedValue,
"ERC20: decreased allowance below zero"
):
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);

}

return true;

}

I**

* @dev Moves ‘amount of tokens from “from' to to".

*

* This internal function is equivalent to {transfer}, and can be used to

* e.g. implement automatic token fees, slashing mechanisms, etc.
*

* Emits a {Transfer} event.

*

* Requirements:

*

* =“from cannot be the zero address.

*-"to’ cannot be the zero address.
* - “from must have a balance of at least ‘amount.
*
function _transfer(
address from,
address to,
uint256 amount
) internal virtual {
require(from != address(0), “ERC20: transfer from the zero address”);
require(to = address(0), "ERC20: transfer to the zero address”);

_ heforeTokenTransfer(from, to, amount);

uint256 fromBalance = _halances|[from];
require(

fromBalance >= amount,

“ERC20: transfer amount exceeds balance”
);
unchecked {

_halances[from] = fromBalance - amount;

I Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by

Il decrementing then incrementing.

_balancesl[to] += amount;

}
emit Transfer(from, to, amount);

_afterTokenTransfer(from, to, amount);

}

[** @dev Creates "amount tokens and assigns them to “account’, increasing
* the total supply.
*

* Emits a {Transfer} event with “from’ set to the zero address.

*

* Requirements:

* ~~account’ cannot be the zero address.

*

function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address”);

_heforeTokenTransfer(address(0), account, amount);

_totalSupply += amount;

unchecked {
I Overflow not possible: halance + amount is at most totalSupply + amount, which is checked ahove.
_halances[account] += amount;

}

emit Transfer(address(0), account, amount);

_ afterTokenTransfer(address(0), account, amount);

}
l**

* @dev Destroys “amount’ tokens from “account’, reducing the
* total supply.
*

* Emits a {Transfer} event with ‘to set to the zero address.
*

* Requirements:
*
* ~“account’ cannot be the zero address.
* = “account’ must have at least “amount tokens.
*
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), “"ERC20: burn from the zero address”);

_heforeTokenTransfer(account, address(0), amount);

uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance”);
unchecked {

_balances[account] = accountBalance - amount;

I Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}

emit Transfer(account, address(0), amount);

_afterTokenTransfer(account, address(0), amount);

}
I**

* @dev Sets "amount’ as the allowance of “spender over the ‘owner" s tokens.
*

* This internal function is equivalent to “approve’, and can be used to

* e.g. set automatic allowances for certain subsystems, etc.

*

* Emits an {Approval} event.

*

* Requirements:
* -“owner cannot be the zero address.
* -“spender cannot be the zero address.
*l
function _approve(
address owner,
address spender,
uint256 amount

) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address”);
require(spender != address(0), "ERC20: approve to the zero address");

_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);

}

I**

* @dev Updates “owner s allowance for “spender’ based on spent ‘amount’.
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
* Might emit an {Approval} event.
*l
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(
currentAllowance >= amount,
"ERC20: insufficient allowance”
)
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}

I**

* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.

*

* Calling conditions:
*
* - when “from" and to are both non-zero, “amount’ of “from™'s tokens
* will be transferred to to".
* - when “from’ is zero, ‘amount’ tokens will be minted for to".
* - when “to" is zero, “amount’ of “from™'s tokens will be burned.
* =“from and to are never hoth zero.
*
*To learn more about hooks, head to xref:-R00T-extending-contracts.adoc#using-hooks[Using Hooks].
*
function _beforeTokenTransfer(
address from,
address to,

uint256 amount
) internal virtual {}

I**

* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.

*

* Calling conditions:
*
* - when “from" and *to" are both non-zero, “amount’ of “from™'s tokens
* has been transferred to ‘to".
* - when “from’ is zero, ‘amount’ tokens have been minted for ‘to".
* - when “to' is zero, “amount’ of “from™'s tokens have heen burned.
* = “from and to" are never hoth zero.
*
*To learn more about hooks, head to xref:R00T:extending-contracts.adoc#using-hooks[Using Hooks].
*
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}

}

I**
* @dev Wrappers over Solidity's arithmetic operations with added overflow

* checks.
*/

library SafeMath {
I**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.

*

* Counterpart to Solidity's "+ operator.

*

* Requirements:

*

* - Addition cannot overflow.

*l

function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint25%c=a+b;
require(c >= a, "SafeMath: addition overflow");

return c;

}

I**

* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).

*

* Counterpart to Solidity's - operator.
*

* Requirements:
*

* - Subtraction cannot overflow.

*

function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");

}
I**

* @dev Returns the subtraction of two unsigned integers, reverting with custom message on

* overflow (when the result is negative).
*

* Counterpart to Solidity's "~ operator.

*

* Requirements:

*

* - Subtraction cannot overflow.

*

function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint25% c=a-b;

return c;

}
l**

* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.

*

* Counterpart to Solidity's ™" operator.

* Requirements:

*

* - Multiplication cannot overflow.

*l

function mul(uint256 a, uint256 b) internal pure returns (uint256) {
I/ Gas optimization: this is cheaper than requiring ‘a" not being zero, but the
Il benefitis lost if 'b" is also tested.

Il See: hitps://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if @==0){
return 0;

}

uint2d6c=a*b;
require(c / a == b, "SafeMath: multiplication overflow");

return c;

}

I**

* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.

* Counterpart to Solidity's ' operator. Note: this function uses a

*“revert opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).

*

* Requirements:

* - The divisor cannot be zero.

*

function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero”);

}

I**

* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.

* Counterpart to Solidity's '/ operator. Note: this function uses a

*“revert opcode (which leaves remaining gas untouched) while Solidity

* uses an invalid opcode to revert (consuming all remaining gas).

*

* Requirements:

* - The divisor cannot be zero.

*l

function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c=alb;
Il asserta ==b * ¢ + a7 b); // There is no case in which this doesn't hold

return c;

}

I**

* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.

* Counterpart to Solidity's % operator. This function uses a ‘revert

* opcode (which leaves remaining gas untouched) while Solidity uses an

* invalid opcode to revert (consuming all remaining gas).

*

* Requirements:

*

* - The divisor cannot be zero.
*

function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero®);

}
l**

* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.

* Counterpart to Solidity's "% operator. This function uses a ‘revert

* opcode (which leaves remaining gas untouched) while Solidity uses an

* invalid opcode to revert (consuming all remaining gas).

*

* Requirements:

*

* - The divisor cannot be zero.
*l
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
returna’ b;
}
}

interface IUniswapV2Factory {
event PairCreated(
address indexed token0,
address indexed tokenT1,
address pair,
uint

);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(

address tokenA,

address tokenB
) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(

address tokenA,

address tokenB

) external returns (address pair);

function setFeeTo(address) external;

function setFeeToSetter(address) external;

}

interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);

function name() external pure returns (string memory);
function symhol() external pure returns (string memory);
function decimals() external pure returns (uint8);

function totalSupply() external view returns (uint);

function balanceOf(address owner) external view returns (uint);

function allowance(
address owner,
address spender
) external view returns (uint);

function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (hool);

function transferFrom(
address from,
address to,
uint value

) external returns (bool);

function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);

function permit(
address owner,
address spender,
uint value,
uint deadline,
uint8 v,
bytes32r,
bytes32 s

) external;

event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(

address indexed sender,
uint amount0,
uint amount1,
address indexed to
);
event Swap(
address indexed sender,
uint amountOin,
uint amount1in,
uint amount00ut,
uint amount10ut,
address indexed to
):

event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves()

external

view

returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(

uint amount00ut,

uint amount10ut,

address to,

bytes calldata data
) external;
function skim(address to) external;

function sync() external;

function initialize(address, address) external;

}

interface [UniswapV2Router01 {
function factory() external pure returns (address);

function WETH() external pure returns (address);

function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);

function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline

)
external
payable
returns (uint amountToken, uint amountETH, uint liquidity);

function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);

function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);

function removeLiquidityWithPermit(

address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax,
uint8 v,
bytes32r,
bytesd2 s

) external returns (uint amountA, uint amountB);

function removeLiquidityETHWithPermit(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax,
uint8 v,
bytes32r,
bytesd2 s
) external returns (uint amountToken, uint amountETH);

function swapExactTokensForTokens(
uint amountin,
uint amountQutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);

function swapTokensForExactTokens(
uint amountOut,
uint amountinMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);

function swapExactETHForTokens(
uint amountOutMin,
address]] calldata path,
address to,
uint deadline
) external payable returns (uint[] memory amounts);

function swapTokensForExactETH(

uint amountOut,
uint amountinMax,
address]] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);

function swapExactTokensForETH(
uint amountin,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);

function swapETHForExactTokens(
uint amountOut,
address[] calldata path,
address to,
uint deadline
) external payable returns (uint{] memory amounts);

function quote(
uint amountA,
uint reserveA,
uint reserveB
) external pure returns (uint amountB);

function getAmountOut(
uint amountn,
uint reserveln,
uint reserveQut
) external pure returns (uint amountOut);

function getAmountin(
uint amountOut,
uint reserveln,
uint reserveQut
) external pure returns (uint amountin);

function getAmountsQOut(
uint amountn,
address[] calldata path
) external view returns (uint[] memory amounts);

function getAmountsin(
uint amountOut,
address[] calldata path
) external view returns (uint[] memory amounts);

}

interface IUniswapV2Router02 is [UniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountETH);

function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax,
uint8 v,
bytes32r,
bytes32 s
) external returns (uint amountETH);

function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountin,
uint amountOutMin,
addressl] calldata path,
address to,
uint deadline
) external;

function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;

function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountin,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;

}

contract MixedCryptoArts is ERC20, Ownable {
using SafeMath for uint256;

uint256 public _transferTax = 4;
address public taxWallet = 0x426f0be4102a6A1752290a2A0965d619D792e0a;
mapping (address => hool) public _isWhiteListedFromFee;

uint256 public maxWalletLimit = 44444444444444 * 10 ** decimals();

IUniswapV2Router02 public immutable uniswapV2Router;
address public immutable uniswapV2Pair;

constructor() ERC20("Mixed Crypto Arts", "MCA") {

[UniswapV2Router02 _uniswapV2Router = [UniswapV2Router02(
0x7a250d5630B4cF539739dF2C5dAchkc659F2488D

):

I/ CREATE A UNISWAP PAIR FOR THIS NEW TOKEN

uniswapV2Pair = [UniswapV2Factory(_uniswapV2Router.factory()
.createPair(address(this), _uniswapV2Router. WETH());

I SET THE REST OF THE CONTRACT VARIABLES

uniswapV2Router = _uniswapV2Router;

/I MINT INITIAL SUPPLY
_mint(msg.sender, 888888888888888 * 10 ** decimals();

IIExclude owner from fees

_isWhiteListedFromFee[owner()] = true;

_isWhiteListedFromFee[taxWallet] = true;
}

function _transfer(
address sender,
address recipient,
uint256 amount
) internal virtual override {
uint256 transferAmount = amount;

if(!_isWhiteListedFromFee[sender] && !_isWhiteListedFromFee[recipient]}{

if(recipient = uniswapV2Pair){
require(balanceOf(recipient) + amount <= maxWalletLimit, “Exceeds the maxWalletLimit.");

}

if(_transferTax > 0) {
uint256 fee = amount.mul(_transferTax).div(100);
transferAmount=amount.sub(fee);
super._transfer(sender, taxWallet, fee);
}
}
super._transfer(sender, recipient, transferAmount);

}

function changeTaxWallet(address newTaxWallet) public onlyOwner {
require(newTaxWallet = address(0), "New tax wallet cannot be zero address");
require(newTaxWallet |= taxWallet, "New tax wallet must be different from current’);
_isWhiteListedFromFee[taxWallet] = false;

taxWallet = newTaxWallet;

_isWhiteListedFromFee[newTaxWallet] = true;

}

function whiteListFromFee(address account) public onlyOwner {
_isWhiteListedFromFee[account] = true;

}

function includelnFee(address account) public onlyOwner{
_isWhiteListedFromFee[account] = false;

}

function changeMaxWalletLimit(uint256 _limit) public onlyOwner{
require(_limit > totalSupply().div(200), "Limit too low");
maxWalletLimit = _limit;

}

function changeTaxes(uint256 transferTax) public onlyOwner {
require(transferTax <= 25, "Tax too high");
_transferTax = transferTax;

}
function burnTokens(uint256 amount) public onlyOwner {
_burn(msg.sender, amount);
}
i

CERTIFIED SMART CONTRACT AUDITOR

THIS 15 TO ACKNOWLEDGE THAT

HAS SUCCESSFULLY COMPLETED ALL REQUIREMENTS & CRITERIAFOR
CERTIFIED SMART CONTRACT AUDITOR

CERTIFICATION THROUGH EXAMINATION

ADMINISTERED BY BLOCKCHAIN COUNCIL

Certified
Blockchain Expert Tarrence Nibbles, CCE, CCA

mr,
Auditor #17865

	Preface

